С.К. Корб¹, А.Ю. Матов²

¹г. Нижний Новгород, Русское энтомологическое общество (Нижегородское отделение) ²г. Санкт-Петербург, Зоологический институт РАН

Молекулярно-филогенетический анализ совок рода Drasteria Hübner, [1818] (Lepidoptera: Erebidae) Палеарктики

S.K. Korb, A.Y. Matov. Molecular-phylogenetic analysis of the owlet moths of the genus Drasteria Hübner, [1818] (Lepidoptera: Erebidae) of Palaearctics.

Summary. Basing on the first subunit of the cytochromeoxydase gene sequence (COI) we submit the molecular-phylogenetic analysis of the owlet moths of the genus *Drasteria* Hübner, [1818] of the Palaearctic region; two-thirds species of this genus from the mentioned region were studied. The COI-sequence of *Drasteria* is almost not variable (no more than 3 nucleotides within one species). The genus *Drasteria* is monophyletic with strong bootstrap-support of branches. 51 haplotypes were extracted from 100 studied sequences; inside the *Drasteria* populations local as far as widely distributed haplotypes are present. In the Middle Asiatic populations of *D. caucasica* (Kolenati, 1846) the genetic differences on the species level are not detected, this we can conclude *D. hyblaeoides* (Moore, 1878) is not occur the Middle Asiat.

urn:lsid:zoobank.org:pub:3BE982D7-3F39-4405-8A71-090719ADAE9C

Памяти Бориса Витальевича Страдомского, большого ученого и хорошего друга, посвящается.

Введение

Молекулярные методы в настоящее время широко применяются в различных отраслях биологии. В систематике и филогенетике насекомых они применяются уже более 70 лет: от первых работ с использованием электрофореза белков в 50-х гг. прошлого века через более достоверные методы ДНК-гибридизации в 70-х – 80-х годах того же века до начала активного использования ДНК-филогенетики на основании исследования последовательностей нуклеотидов (с конца прошлого столетия) [Page, Holmes, 1998; San Mauro, Agorreta, 2010].

Активность применения молекулярных методов сильно зависит от популярности группы организмов. Например, за последние 20 лет для парусников только одного рода *Parnassius* s.l. было опубликовано не менее 30 работ по молекулярной филогенетике и филогеографии; перечислим лишь некоторые: [Michel et al., 2008; Kop6, 2012; Churkin, Michel, 2014; Korb et al., 2016a; Condamine et al., 2018]. Для менее популярных таксонов количество молекулярных работ значительно ниже; например, для многих родов ночных чешуекрылых таких работ нет вообще, для части родов это одна или две работы. Род *Drasteria* Hübner, [1818] – не исключение. Наиболее объемное секвенирование видов *Drasteria* произведено в Северной Америке в рамках проекта BOLD (Barcode of Life Database); эти данные использованы в работе P. Захири с соавторами [Zahiri et al., 2017]. Для Палеарктики секвенирование видов *Drasteria* проводилось фрагментарно в рамках общих программ изучения биоразнообразия чешуекрылых конкретных регионов – Иберийского п-ова [Ortiz et al., 2017] и Пакистана [Ashfaq et al., 2017].

Род Drasteria имеет широкое голарктическое распространение. Единственная ревизия рода в пределах ареала сделана более 120 лет назад [Butler, 1892]; ревизии неарктических видов рода предпринимались два раза [Richards, 1936; Metlevski, Zolnerowich, 2009], палеарктических – один раз [John, 1910]. В палеарктической части ареала представители рода предпочитают аридные ландшафты, на север они распространены не далее бассейна Нижней Волги. Представители этого рода – ночные бабочки средней и небольшой величины, в размахе крыльев редко превышают 50 мм. Имеют характерный рисунок крыльев, напоминающий рисунок видов рода Catocala, но обычно более простой (Рис. 1): на переднем крыле хорошо заметны крупное почковидное (дискальное) пятно и двойные анте- и постмедиальная линии, причём постмедиальная линия, как правило, зигзагообразно изогнута возле почковидного пятна (один из углов этого изгиба непосредственно касается нижнего края почковидного пятна). Фон задних крыльев белый (реже светло-серый или жёлтый) с широкой чёрной полосой вдоль наружного края, иногда соединяющейся чёрными перемычками с дискальным пятном и наружным краем крыла. Бахромка задних крыльев также часто пёстрая, с чередующимися белыми и чёрными участками. Гениталии самца асимметричные, с удлинёнными вальвами, сильно расширенными и слабо склеротизованными в дистальной половине, крупной заострённой гарпой и двумя другими отростками разной длины в базальной половине, длинным изогнутым ункусом, широкой угловатой юкстой и коротким широким саккусом. Эдеагус короткий и обычно широкий, простой формы, но везика, наоборот, очень сложного строения: с тремя-четырьмя дивертикулумами разной формы, некоторые из них покрыты многочисленными мелкими шипами. Гениталии самок типичного для Erebinae строения: яйцеклад удлинённый, антрум расширенный и мембранозный, проток копулятивной сумки сильно склеротизован, копулятивная сумка крупная, обычно овальной формы, мембранозная, без сигнумов; VIII стернит крупный, слабо склеротизирован.

Кратко молекулярно-филогенетический анализ *Drasteria* Палеарктики был сделан в нашей ревизии этого рода в пределах Средней Азии и прилегающих территорий [Matov, Korb, 2019]. Настоящая работа является полной версией молекулярно-филогенетического анализа. Кроме того, с момента опубликования нашей работы были получены последовательности двух других таксонов *Drasteria*, которые учтены в настоящей статье.

Рис. 1–4. *Drasteria rada* (Boisduval 1848), типовой вид установленного для Палеарктики подрода *Leucanitis* Guenée, 1852. 1 – самец, вид сверху; 2 – гениталии самки; 3 – гениталии самца, эдеагус удален; 4 – эдеагус, везика расправлена.

Материал и методы

Нами проанализировано 103 пробы *Drasteria*, из которых 80 являются нашими собственными (Таб. 1), 23 – взяты из баз геномных данных GenBank [Benson et al., 2013] и BOLD [Ratnasingham, Hebert, 2007] (Таб. 2). Для анализа использованы последовательности первой субъединицы митохондриального гена цитохромоксидазы (COI) (так называемый «штрихкод живого» - barcode of life; основной ген, служащий для идентификации организмов [Hebert et al., 2003]).

Секвенирование собранных нами проб произведено в рамках проекта BOLD на базе University of Guelf, Канада [Ratnasingham, Hebert, 2007]. Для секвенирования использованы прямой праймер LepF1 (ATTCAACCAATCATAAAGATATTGG) и обратный праймер LepR1 (TAAACTTCTGGATGTCCAAAAAATCA) [Hebert et al., 2004]. Подготовка последовательностей для анализа производилась с использованием ПО BioEdit вер. 7.2.5 и М.Е.G.А. вер. Х; обсчет последовательностей производился с использованием ПО M.E.G.A. вер. Х, РорАrt вер. 1.7, DNAsP вер. 6.12.01. Для статистических расчетов использовано ПО IBM SPSS Statistics вер. 23.

Результаты

Для определения изменчивости последовательности COI произведено секвенирование 14 проб *D. obscurata* (Staudinger, 1882) из Тянь-Шаня и 14 проб *D. caucasica* (Kolenati, 1846) из разных мест Средней Азии. Выяснено, что основная масса проб из одного места (8 проб из окр. г. Алматы) идентична (Таб. 3); единственная не идентичная остальным проба имеет различие всего в 1 нуклеотид. В окрестностях Бишкека одна проба идентична большинству проб из окр. г. Бишкек имеют отличие в 1 нуклеотид от проб из г. Алматы. Последовательность из окр. пос. Аксуат (хр. Сырдарьинский Каратау) имеет отличия в 1 нуклеотид от проб из окр. г. Бишкек и от 2 до 3 нуклеотидов из окр. г. Алматы.

Пробы *D. caucasica* демонстрируют тот же уровень вариабельности: из 7 проб, собранных на территории Северного Тянь-Шаня, Турана и Джунгара, 6 идентичны, одна имеет различия в 2 нуклеотида. Пробы из Внутреннего Тянь-Шаня имеют стабильные отличия от проб из Северного Тянь-Шаня, Джунгара и Турана в 1 нуклеотид, из окрестностей Токтогульского вдхр. (Западный Тянь-Шань) 1–3 (в среднем 2) нуклеотида.

Таким образом, последовательность первой субъединицы гена цитохромоксидазы у представителей рода *Drasteria* имеет стабильную структуру, изменчивость внутри одного локалитета или региона выражена слабо, более 80% последовательностей для вида внутри одного региона идентичны, от 15 до 20% могут иметь различия не более чем в 1

нуклеотид; различия между последовательностями COI одного вида близко расположенных областей могут составлять 2–3 нуклеотида. Это позволяет использовать для анализа небольшое количество проб от вида или фенотипа.

Секвенировано 23 вида палеарктических *Drasteria* (2/3 состава), 10 видов (подавляющее большинство из которых малоизвестные и не собирались на протяжении многих лет) не секвенировано.

Оценочное значение параметра формы дискретного гамма-распределения нуклеотидов равно 0,1946. Схема замещения и его пороги оценивались с использованием модели Джукеса-Кантора [Jukes-Cantor, 1969]. Дискретное гамма-распределение использовано для моделирования порогов эволюционных скачков; определено 5 категорий. Основные эволюционные пороги внутри этих категорий: 0,00 (условный порог), 0,01, 0,11, 0,65, 4,23. Частоты встречаемости нуклеотидов равнов: А = 25,00%, T/U = 25,00%, C = 25,00%, и G = 25,00%. Для оценки значений наибольшего сходства автоматически рассчитывалась соответствующая кладограмма. Для анализа использовано 105 последовательностей (включая внешнюю группу и два родственных таксона), включены следующие позиции кодонов: 1-я, 2-я, 3-я и некодирующие. Все позиции, не содержащие данных, во время анализа удалены, в использованной для анализа матрице после всех модификаций осталось 572 нуклеотида.

Значение нуклеотидного разнообразия составляет для полного множества 0.0405698 (все последовательности, включая внешнюю группу и близкие роды), только для *Drasteria* 0.0424960 – степень сегрегации весьма высока, число сегрегирующих оснований – 151. Число оснований, информативных для теста парсимонии, составляет 116. D Таджимы [Tajima, 1989] для полного набора последовательностей (включая внешнюю группу и два близких рода) 0.537892. При исключении из анализа внешней группы и близких родов D Таджимы составляет 0.288775. Для последовательностей только *D. obscurata* D Таджимы -1.269930, только *D. caucasica* -0.826682, только *D. saisani* (Staudinger, 1882) -0.931679. Количество последовательностей остальных видов недостаточно для анализа.

Результат теста филогении: кладограмма, рассчитанная по методу наибольшего сходства (Рис. 5 – 7).

Анализ гаплотипов (Рис. 8): при указанном для данного набора данных нуклеотидном разнообразии (0.405698) стандартная дисперсия составляет 0.0000019, а стандартное отклонение 0.00139. Общее число мутаций в наборе данных: 168, при среднем значении нуклеотидных различий 23.20535 и среднем распределении мутаций на одну последовательность 32.38631 и на одно основание 0.05662. Количество зарегистрированных гаплотипов: 52, разнообразие гаплотипов 0.970 при средневзвешенной дисперсии гаплотипов 0.00005 и стандартном отклонении 0.007.

Дискуссия

Теория многомерной эволюционной стратегии впервые обсуждалась С.К. Корбом с соавторами [Korb et al., 2016b]; суть ее заключается в том, что эволюционного успеха могут достигать не только высокопластичные, но также и узкоспециализированные виды с низкой экологической валентностью, которые реализуют свой потенциал к выживанию и процветанию посредством активной адаптивной радиации в трансграничных стациях; особенно ярко это представлено в горных условиях, имеющих многочисленные варианты биотопов, а также множество биотопов с переходными условиями, отличающимися от первоначальных условий обитания таксона достаточно слабо.

Виды Drasteria обладают широким спектром приспособлений к аридным условиям низкогорий и предгорных пустынь Средней Азии и Казахстана [Щеткин, 1975], однако в горах аридные условия с высотой сменяются гумидными, средние температуры понижаются; выше определенных высот (3200–3500 м) в горах Средней Азии отсутствует безморозный период [Гвоздецкий, Михайлов, 1963]. Очевидно, что реализуемые эволюционные стратегии включают перестройку организма и поведения видов рода для того, чтобы они могли не только выживать, но также и процветать в условиях высокогорных пустынь. Одним из таких приспособлений является обитание высокогорных видов Drasteria в крупнощебнистых осыпях, быстро нагревающихся днем от энергии солнца и довольно долго сохраняющих тепло ночью в силу больших размеров камней (D. obscurata, D. kusnezovi, D. catocalis). Другое приспособление к прохладным ночным условиям среднегорий и высокогорных и среднегорьях таким образом эти бабочки разогревают свое тело за счет грудной мускулатуры, в низкогорьях – охлаждают тело формируемым крыльями потоком воздуха.

Род *Drasteria* является не менее удобной группой для изучения многомерной эволюционной стратегии, чем *Euphydryas* Scudder, 1872: в роде имеются как широко распространенные, так и локальные виды; представители рода занимают главным образом аридные и переходные типы биотопов; наибольшего разнообразия род достигает в горных областях, что говорит об активной адаптивной радиации в трансграничных биотопах; и т.п.

Изменчивость

Уровень изменчивости последовательности СОІ, подтвержденный на наборах данных двух полиморфных видов из одного и того же (*D. obscurata*) и разных (*D. caucasica*) регионов, низкий. Низкий уровень изменчивости митохондриального генома совок отмечался и ранее [Gregory, Hebert, 2002], однако на небольшом материале (не более трех проб от вида). Наши исследования подтверждают выводы Грегори и Хеберта на большем материале.

Изменчивость внешних признаков достаточно широка. *D. caucasica* может встречаться как в обычной форме (передние крылья имеют хорошо выраженные пятна и линии), так и в форме с редуцированными пятнами и линиями (при этом окраска переднего крыла кажется почти однородной); цвет поперечных линий на переднем крыле может также сильно различаться. Секвенированные нами из долины р. Или бабочки относятся к обоим фенотипам; также секвенировано несколько экземпляров с промежуточными признаками. Различия в последовательности СОІ, как указано выше, либо отсутствуют, либо составляют не более 1 нуклеотида. Корреляций между нуклеотидными различиями СОІ и рисунком крыльев у экземпляров этого вида не обнаружено.

D. obscurata также имеет широко изменчивый крыловой рисунок, особенно ярко эта вариабельность проявляется в основном фоне крыльев: он варьирует от почти белого у популяций из пустынь Восточного Приаралья до темно-серых на Тянь-Шане и Алае и желтых в Гиссаре и Дарвазе. При этом, как отмечалось выше, изменчивость последовательности СОІ крайне низка и не превышает 3 нуклеотидов.

Рис. 6

Рис. 7

Рис. 5–7. Кладограмма палеарктических представителей рода *Drasteria*. Метод максимального сходства, параметрическая модель Кимура-2, тест филогении: 10000 бутстреп-репликаций. Кладограмма разбита на 3 части для удобства чтения.

Следовательно, широкий размах изменчивости внешних признаков *Drasteria* не имеет корреляций с изменчивостью последовательности СОІ и имеет, очевидно, экзогенную природу (микроклимат, кормовые растения, обилие пищи и т.п.).

Рис. 8. Сеть гаплотипов *Drasteria* Палеарктики. Метод построения: Median Joining. Сеть построена для выровненных последовтельностей COI, 103 последовательности, 52 гаплотипа.

Анализ кладограммы

Анализ кладограммы палеарктической части рода (Рис. 5–7) показывает, что близкие морфологически таксоны образуют отдельные кластеры с высокой бутстреп-поддержкой. Этими кластерами являются: кластер *D. picta* (Christoph, 1877) (секвенированы все палеарктические виды группы), кластер *D. saisani* (секвенировано 3/5 палеарктической фауны группы), не секвенированы *D. yerburyi* (Butler, 1892), вид, известный только по типовому материалу, и *D. sinuosa* (Staudinger, 1884) ввиду отсутствия пригодного для ДНК-анализа материала), кластер *D. aberrans* (Staudinger, 1888) (секвенировано 3/5 видов группы, не секвенированы: *D. antiqua* (Staudinger, 1889), малоизвестный вид, отсутствующий в сборах более 30 лет, *D. axuana* (Püngeler, 1907), ввиду отсутствия пригодного для ДНК материала), кластер *D. langi* (секвенировано 5/6 палеарктических видов группы, не секвенирован: *D. mongoliensis* Wiltshire, 1969 ввиду отсутствия пригодного для днк-анализа (секвенировано 2/3 палеарктических видов группы, не секвенирован: *D. mongoliensis* Wiltshire, 1969 ввиду отсутствия пригодного для днк-анализа материала), кластер *D. langi* (секвенировано 5/6 палеарктических видов группы, не секвенирован: *D. mongoliensis* Wiltshire, 1969 ввиду отсутствия пригодного для днк-анализа материала), кластер *D. rada* (Boisduval, 1848) (секвенировано 2/3 палеарктических видов группы, не секвенирован: *D. scolopax* (Alphéraky, 1892), малоизвестный вид, не собиравшийся более 100 лет), кластер *D. саисаsica* (секвенирование фенотипов *D. hyblaeoides* (Мооге, 1878) из Средней Азии показало полное отсутствие генетических отличий от *D. caucasica*, однако проб этого таксона из его типового местонахождения или близких областей у нас не было, поэтому примем в качестве рабочей гипотезы, что нами секвенировано 2/3 палеарктической

фауны группы), кластер *D. chinensis* (Alphéraky, 1892) (секвенирован полностью), кластер *D. flexuosa* (Ménétriès, 1849) (секвенированы все палеарктические виды группы), кластер *D. herzi* (Alphéraky, 1895) (секвенирована половина палеарктической фауны группы, не секвенирован *D. kusnezovi* (John, 1910) по причине отсутствия пригодного для ДНК-анализа материала).

Полученное филогенетическое древо характеризует род *Drasteria* как монофилетическую группу (бутстрепподдержка базального ветвления 99); на кладограмме рода выделяется 10 локусов, коррелирующих с группами видов, выделенных по морфологическим признакам [Matov, Korb, 2019]. Эти группы образуют 4 кластера, которые, вероятно, могут трактоваться как подроды: кластер *D. langi* (группы *D. langi, D. saisani, D. cailino* (Lefèbvre, 1827), *D. aberrans, D. picta*), кластер *D. rada* (группы *D. rada, D. chinensis* и *D. caucasica*), кластер *D. flexuosa* (группа *D. flexuosa*) и кластер *D. herzi* (группа *D. herzi*).

Для палеарктической части рода установлены следующие таксоны родовой группы: Drasteria (типовой вид Drasteria graphica Hübner, 1818), Leucanitis Guenée, 1852 (типовой вид: Microphisa rada Boisduval, 1848) и Aleucanitis Warren, 1913 (типовой вид: Heliothis cailino Lefèbvre, 1827); таким образом, в палеарктической части рода описано два подрода (Drasteria s.str. (=Aleucanitis); Leucanitis); два других вероятных подрода остаются до сих пор неописанными.

Анализ кладограмм отдельных групп видов (рис. 5–7) позволяет сделать следующие заключения. *D. saisani* является генетически маловариабельным видом, четко разделенным только на два кластера: среднеазиатский и пакистанский (рис. 5). Пакистанская популяция вида, возможно, заслуживает описания в качестве отдельного подвида (требуется дополнительное исследование с привлечением большего материала). *D. cailino* в Средней Азии также генетически довольно стабилен, составляет на кладограмме отдельный кластер. Кроме него, в этой части кладограммы выделяются кластер североафриканского вида *D. philippina* (Austaut, 1880) (на кладограмме это последовательности IBLAO356-12 и IBLAO342-12) и южноевропейского (номинативного) подвида *D. cailino* (на кладограмме это последовательности MK117801 и PHLAF309-11) (Рис. 5).

Кладограмма *D. picta* разделилась на два глубоко разобщенных кластера (Рис. 5): *D. picta* и *D. pseudopicta* Matov et Korb, 2019. Различия последовательностей СОІ между двумя этими таксонами оказались 2.2–2.5%.

Кладограмма *D. caucasica* по всей Средней Азии и Южному Казахстану имеет довольно равномерный вид (Рис. 7); в отдельный кластер выделяется только одна группа гаплотипов (см. ниже) с широким распространением. Важно отметить, что нами производился отбор для секвенирования как экземпляров *D. caucasica*, имеющих «классическую» внешность, так и экземпляров, первоначально определенных как *D. hyblaeoides*. Как видно, разобщения на уровне видов эти гаплотипы не имеют – часть экземпляров, имеющих типичный для *D. hyblaeoides* облик, встречается и в широко распространенном, и в локальных, гаплотипах.

Кладограмма группы *D. langi* (Рис. 6) также довольно однородна; эта однородность следует и из анализа гаплотипов группы (см. ниже). Важно отметить, что гаплотип с широким распространением (Заилийский Алатау – Киргизский хр. – Туркестанский хр.) находится в базальном положении относительно остальных; к этому же гаплотипу относится проба, взятая от экземпляра, имеющего типичную для *langi* внешность (желтый фон задних крыльев). С учетом того, что последовательности СОІ для фенотипов *obscurata* и *langi* не имеют различий, их рисунок крыльев сходен (различается только основной фон задних крыльев), а гениталии самцов идентичны (см. [Matov, Korb, 2019]), название *langi* имеет приоритет перед *obscurata*, а последний является подвидом первого.

Кладограмма группы *D. flexuosa* (Рис. 7), прежде всего, показывает, что обитающий в Монголии и Южной Сибири таксон *D. pulverosa* Wiltshire, 1969, хотя и составляет на кладограмме группы отдельную, базальную, ветвь, не имеет достаточных отличий для придания ему видового статуса, поэтому должен быть синонимизирован с *D. flexuosa* (Ménétriès, 1849) = *D. pulverosa* Wiltshite, 1969. На кладограмме этого вида отдельные кластеры составляют две популяции: израильская и казахстанская. Возможно, они представляют отдельные подвиды, хотя, скорее всего, эта лакуна заполнится при появлении дополнительного материала из не охваченных данным исследованием локалитетов в Передней Азии и на Ближнем Востоке.

Наиболее любопытные результаты получены для кластеров *D. sesquilina* и *D. tenera*. В первом кластере, по результатам ДНК-тестирования собранной в 2019 г. в ущ. Кызыл-Эшме (южный макросклон Алайского хр.) пробы, имеется, возможно, еще неописанный вид *Drasteria*. К сожалению, по единственной пробе нельзя однозначно определить статус обнаруженной популяции ввиду того, что существует вероятность ошибок секвенирования. Вопрос с этой популяцией мы оставляем открытым до секвенирования как минимум еще одной пробы из того же локалитета.

Во второй кластер, объединяющий виды, имеющие в целом однотипные окраску и рисунок крыльев (бабочки разных оттенков серого, с одним или несколькими крупными черными пятнами на заднем, более светлом, крыле, и с темным струйчатым рисунком на переднем крыле), совершенно неожиданно попал характеризующийся иными внешними признаками *D. catocalis.* Для *D. catocalis* характерны разноцветные крылья (передние от серых до бурых, задние от желто-оранжевых до красных) с крупным черным дискальным пятном и двумя черными перевязями (срединной и краевой) на заднем крыле.

Анализ гаплотипов

Всего из использованных нами 103 проб *Drasteria* выделено 52 гаплотипа, т.е. формально каждой второй пробе соответствует отдельный гаплотип (Рис. 8). Наибольший интерес представляют большие выборки последовательностей: *D. obscurata* и *D. caucasica*.

Выборка *D. obscurata*. Внутри выборки определено 4 мутации и 5 гаплотипов. Гаплотип *I*: правобережье Аральского моря (1 проба); гаплотип *2*: центральная часть Заилийского Алатау – центральная часть Киргизского хр. (9 проб); гаплотип *3*: широко распространенный в Средней Азии (3 пробы: Заилийский Алатау, Киргизский хр., Туркестанский хр.); гаплотипы *4* и *5*: центральная часть Киргизского хр. (по 1 пробе).

Выборка *D. caucasica*. Внутри выборки определено 6 мутаций и 6 гаплотипов. Гаплотипы *I* и 2: Ферганский хр. (1 проба гаплотип *I*, 3 пробы гаплотип *2*), гаплотип *3*: хр. Молдо-Тоо (2 пробы), гаплотип *4*: равнины Юго-Восточного Казахстана (1 проба), гаплотип *5*: долина р. Или (1 проба), гаплотип *6*: широко распространённый в горах Средней Азии и Казахстана (7 проб из Джунгарского Алатау, долины р. Или и Киргизского хр.).

Гаплотипы проанализированных таксонов, таким образом, демонстрируют те же закономерности, что гаплотипы большинства других чешуекрылых [Pazhenkova et al., 2015]: внутри каждой популяции имеется как минимум один гаплотип, характерный только для определенного местонахождения, и как минимум один гаплотип, имеющий широкое распространение. Гаплотипов с широким распространением может быть несколько, как для *D. obscurata* (два гаплотипа: первый имеет северотяншанское распространение, второй – широко-среднеазиатское), или один, как для *D. caucasica*.

Выводы

1. Впервые исследованы последовательности СОІ двух третей видов рода Drasteria Палеарктики.

2. Последовательность СОІ представителей *Drasteria* имеет низкий уровень изменчивости, различия между популяциями исследованных видов из разных местонахождений не превышают 3 нуклеотидов.

3. Кладограмма, построенная для рода *Drasteria*, показывает его монофилетичность с высокой бутстреп-поддержкой. Группы видов на кладорамме хорошо разграничены.

4. Из 103 исследованных ДНК-проб выделено 52 гаплотипа. Подтверждается, что внутри популяций *Drasteria* имеются как локальные, так и широко распространенные гаплотипы.

5. В популяциях *D. caucasica* Средней Азии не обнаружено генетических различий на уровне вида, на этом основании можно констатировать, что в Средней Азии не встречается *D. hyblaeoides*.

6. Внутри группы *D. sesquilina* с южного макросклона Алайского хребта обнаружен предположительно новый для науки вид, требующий дополнительного изучения.

Благодарности. Авторы сердечно признательны В. Маю (Dr W. Mey), курирующему коллекции чешуекрылых Museum für Naturkunde Leibniz-Institut für Evolutions- und Biodiversitätsforschung (Берлин, Германия), за предоставление доступа к коллекциям. Авторы благодарны команде проекта BOLD за секвенирование проб *Drasteria* и лично А. Хаусманну (Dr A. Hausmann, Zoologische Staatssammlung München, Мюнхен, Германия) за организацию секвенирования. За предоставление материалов, пригодных для ДНК-секвенирования, авторы благодарны А. Самусю (Волгоград), Е. Комарову (Волгоград), А. Белику (Саратов), Р. Хаверинену (R. Haverinen, Хельсинки, Финляндия) и К. Нуппонену (Dr К. Nupponen, Хельсинки, Финляндия). За критическое прочтение рукописи и ряд ценных замечаний и дополнений авторы признательны † Б.В. Страдомскому (Институт аридных зон Южный научный центр РАН, Ростов-на-Дону). Работа А.Ю. Матова была выполнена в рамках гостемы АААА-А17-117030310210-3, а также поддержана программой развития биоресурсных коллекций ФАНО.

Литература

- Гвоздецкий Н.А., Михайлов Н.И. 1963. Физическая география СССР. М.: Гос. изд-во географ. лит. 572 с.
- Корб С.К. 2012. Систематика трибы Parnassiini (Lepidoptera: Papilionidae) на основании исследования четырех генов и морфологии имаго // Эверсманния. Энтомол. иссл. в России и соседних регионах. Вып. 31-32. Тула. С. 5–37.
- Щеткин Ю.Л. 1975. Высшие чешуекрылые песков Вахшской долины (Lepidoptera: Rhopalocera и Heterocera). Душанбе: Изд-во АН Тадж. ССР. 195 с.
- Asfaq M., Akhtar S., Athar Rafi M., Mansoor S., Hebert P.D.N. 2017. Mapping global biodiversity connections with DNA barcodes: Lepidoptera of Pakistan // PLoS One. Vol. 12 (3). e0174749
- Benson D.A., Cavanaugh M., Clark K., Karsch-Mizrachi I., Lipman D. J., Ostell J., Sayers E. V. 2013. GenBank // Nucleic Acids Research. Vol. 41. P. D36–D42.
- Butler A.G. 1892. Revision of the Noctuid genus *Melipotis*, Hübn., with descriptions of two new species // The annals and magazine of natural history. Vol. 10. P. 315–327.
- Churkin S., Michel F. 2014. Analyses of morphology and mitochondrial DNA reveal a deep split within *Parnassius charltonius* Gray, [1853] (Lepidoptera, Papilionidae) // Atalanta. Vol. 45. P. 97–125.
- Condamine F.L., Rolland J., Höhna S., Sperling F.A. H., Sanmartín I. 2018. Testing the role of the red queen and court jester as drivers of the macroevolution of Apollo butterflies // Systematic Biology. Vol. 67 (6). P. 940–964.

Gregory T.R., Hebert P.D.N. 2002. Genome size variation in lepidopteran insects // Canad. J. Zool. Vol. 81. P. 1399–1405.

- Hebert P.D., Cywinska A., Ball S. L., de Waard J.R. 2003. Biological identifications through DNA barcodes // Proc. Biol. Sciences. Vol. 270. P. 313–321.
- Hebert P.D., Penton E.H., Burns J.M., Janzen D.H., Hallwachs W. 2004. Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly *Astraptes fulgerator* // Proc. Nat. Acad. Scien. USA. Vol. 101. P. 14812–14817.

John O. 1910. Eine Revision der Gattung Leucanitis Gn. // Horae Soc. Entomol. Ros. T. 39. P. 585-646.

- Jukes T.H., Cantor C.R. 1969. Evolution of protein molecules // Mammalian Protein Metabolism. New York: Acad. Press. P. 21– 132.
- Korb S.K., Fric Z.F., Bartonova A. 2016a. Phylogeography of *Koramius charltonius* (Gray, 1853) (Lepidoptera: Papilionidae): a case of too many poorly circumscribed subspecies // Nota lepid. Vol. 39 (2). P. 169–191.
- Korb S.K., Bolshakov L.V., Fric Z.F., Bartonova A. 2016b. Cluster biodiversity as a multidimensional structure evolution strategy: checkerspot butterflies of the group *Euphydryas aurinia* (Rottemburg, 1775) (Lepidoptera: Nymphalidae) // Syst. Entomol. Vol. 41. P. 441–457.
- Matov A.Y., Korb S.K. 2019. A revision of the South Kazakhstanian and Central Asiatic representatives of the genus *Drasteria* with attention to the adjacent territories (Lepidoptera: Erebidae) // Zootaxa. No. 4673. 104 p.
- Metlevski J., Zolnerowich G. 2009. A new species of *Drasteria* Hübner (Noctuidae: Catocalinae: Melipotini) from Arizona, with comments on the genus // J. Lepid. Soc. Vol. 63. P. 1–10.
- Michel F., Rebourg C., Cosson E., Descimon H. 2008. Molecular phylogeny of Parnassiinae butterflies (Lepidoptera: Papilionidae) based on the sequences of four mitochondrial DNA segments // Ann. Soc. Entomol. France. Vol. 44 (1). P. 1–36.
- Otriz A.S., Rubio R.M., Guerrero J.J., Garre M.J., Serrano J., Hebert P.D.N., Hausmann A. 2017. Close congruence between barcode index numbers (bins) and species boundaries in the Erebidae (Lepidoptera: Noctuoidea) of the Iberian Peninsula // Biodiversity data Journal. Vol. 5: e19840.

Page R.D.M., Holmes E.C. 1998. Molecular evolution: a phylogenetic approach. Oxford: Blackwell Science. 420 p.

Pazhenkova E.A., Zakharov E.V., Lukhtanov V.A. 2015. DNA barcoding reveals twelve lineages with properties of phylogenetic and biological species within *Melitaea didyma* sensu lato (Lepidoptera, Nymphalidae) // ZooKeys. No. 538. P. 35–46.

Ratnasingham S., Hebert P. 2007. BOLD: The Barcode of Life Data System (<u>www.barcodinglife.org</u>) // Molecular Ecology Notes. Vol. 7 (3). P. 355–364.

Richards A.G. 1939. A revision of the North American species of the *Phoberia – Melipotis – Drasteria* group of moths (Lepidoptera, Phalaenidae). New York: New York Entomol. Soc. 100 p.

San Mauro D., Agorreta A. 2010. Molecular systematics: a synthesis of the common methods and the state of knowledge // Cellular and Molecular Biology Letters. Vol. 15 (2). P. 311–341.

Tajima F. 1989. Statistical methods to test for nucleotide mutation hypothesis by DNA polymorphism // Genetics. Vol. 123. P. 585–595.

Zahiri R., Lafontaine J.D., Schmidt B.C., de Waard J.R., Zakharov E.V., Hebert P.D.N. 2017. Probing planetary biodiversity with DNA barcodes: the Noctuoidea of North America // PLoS One. Vol. 12 (6): e0178548.

Поступила в редакцию 18.04.2020.

РЕЗЮМЕ. На базе последовательности первой субъединицы гена цитохромоксидазы (COI) предлагается молекулярнофилогенетиеский анализ совок рода *Drasteria* Hübner, [1818] Палеарктики; исследованы последовательности COI двух третей видов рода этого региона. Последовательность COI *Drasteria* имеет низкий уровень изменчивости (не более 3 нуклеотидов внутри одного вида). Род *Drasteria* является монофилетичным с высокой бутстреп-поддержкой ветвлений. Из 100 исследованных ДНК-проб выделено 52 гаплотипа; внутри популяций *Drasteria* имеются как локальные, так и широко распространенные гаплотипы. В популяциях *D. caucasica* (Kolenati, 1846) Средней Азии не обнаружено генетических различий на уровне вида, поэтому можно констатировать, что в Средней Азии не встречается *D. hyblaeoides* (Moore, 1878). Библ. 26.

Таблица 1

Последовательности СОІ, секвенированные в рамках настоящего исследования

№	Идентификатор GenBank	Вид	Страна	Локалитет	Широта	Долгота
1	MK117746	D. obscurata	Казахстан	Корам	43.56861	78.23333
2	MK117747	D. obscurata	Казахстан	Б. Алмаатинка	43.22972	76.99861
3	MK117748	D. obscurata	Казахстан	Б. Алмаатинка	43.22972	76.99861
4	MK117749	D. obscurata	Казахстан	Б. Алмаатинка	43.22972	76.99861
5	MK117750	D. obscurata	Казахстан	Б. Алмаатинка	43.22972	76.99861
6	MK117751	D. obscurata	Казахстан	Б. Алмаатинка	43.22972	76.99861
7	MK117752	D. obscurata	Казахстан	Б. Алмаатинка	43.22972	76.99861
8	MK117753	D. obscurata	Казахстан	Б. Алмаатинка	43.22972	76.99861
9	MK117754	D. obscurata	Казахстан	Б. Алмаатинка	43.22972	76.99861
10	MK117755	D. obscurata	Киргизия	Алай	40.26638	73.53444
11	MK117756	D. sesquilina	Киргизия	Алай	40.26638	73.53444
12	MK117757	D. obscurata	Киргизия	Пер. Урумбаш	41.77861	72.99583
13	MK117758	D. obscurata	Киргизия	Бишкек	42.83222	74.75805
14	MK117759	D. cailino	Казахстан	Усек	44.48944	80.02777
15	MK117760	D. cailino	Казахстан	Коктал	44.17722	79.68944
16	MK117761	D. obscurata	Киргизия	Бишкек	42.83222	74.75805
17	MK117762	D. obscurata	Киргизия	Бишкек	42.83222	74.75805
18	MK117763	D. sculpta	Киргизия	Бишкек	42.71472	74.64333
19	MK117764	D. sesquilina	Киргизия	Алай	40.26638	73.53444
20	MK117765	D. cailino	Казахстан	Коктал	44.17722	79.68944
21	MK117766	D. caucasica	Казахстан	Коктал	44.17722	79.68944
22	MK117767	D. caucasica	Казахстан	Жаркент	44.48944	80.02777
23	MK117768	D. saisani	Киргизия	Бишкек	42.71472	74.64333
24	MK117769	D. picta	Россия	Досанг	46.88944	47.91333
25	MK117770	D. picta	Россия	Досанг	46.88944	47.91333
26	MK117771	D. caucasica	Казахстан	Усек	44.48944	80.02777
27	MK117772	D. cailino	Киргизия	Токтогул	41.75500	73.00690
28	MK117773	D. cailino	Киргизия	Токтогул	41.75500	73.00690
29	MK117774	D. caucasica	Киргизия	Токтогул	41.75500	73.00690
30	MK117775	D. caucasica	Киргизия	Токтогул	41.75500	73.00690
31	MK117776	D. caucasica	Киргизия	Куланак	41.36600	75.58190
32	MK117777	D. langi	Киргизия	Саркат	39.75000	69.47310
33	MK117778	D. cailino	Киргизия	Токтогул	41.75500	73.00690
34	MK117779	D. picta	Киргизия	Бишкек	42.71472	74.64333
35	MK117780	D. sculpta	Киргизия	Токтогул	41.75500	73.00690
36	MK117781	D. sculpta	Киргизия	Токтогул	41.75500	73.00690
37	MK117782	D. saisani	Казахстан	Усек	44.31670	79.83330
38	MK117783	D. caucasica	Казахстан	Усек	44.31670	79.83330
39	MK117784	D. caucasica	Казахстан	Усек	44.31670	79.83330

№	Идентификатор GenBank	Вид	Страна	Локалитет	Широта	Долгота
40	MK117785	D. saisani	Казахстан	Чингельсу	43.63330	78.76670
41	MK117786	D. caucasica	Казахстан	Коктал	45.45750	75.19360
42	MK117787	D. caucasica	Казахстан	Коктал	45.45750	75.19360
43	MK117788	D. caucasica	Киргизия	Токтогул	41.75500	73.00690
44	MK117789	D. sculpta	Киргизия	Саркат	39.75000	69.47310
45	MK117790	D. saisani	Киргизия	Каракол	41.98950	74.15840
46	MK117791	D. saisani	Киргизия	Каракол	41.98950	74.15840
47	MK117792	D. sesquilina	Киргизия	Каракол	41.98950	74.15840
48	MK117793	D. sculpta	Киргизия	Каракол	41.98950	74.15840
49	MK117794	D. saisani	Киргизия	Каракол	41.98950	74.15840
50	MK117795	D. saisani	Киргизия	Каракол	41.98950	74.15840
51	MK117796	D. caucasica	Киргизия	Куланак	41.36600	75.58190
52	MK117797	D. caucasica	Киргизия	Токтогул	41.75500	73.00690
53	MK117798	D. saisani	Киргизия	Токтогул	41.75500	73.00690
54	MK117799	D. cailino	Казахстан	Айдарлы	43.99350	79.57250
55	MK117800	D. aberrans	Казахстан	Айдарлы	43.99350	79.57250
56	MK117801	D. aberrans	Казахстан	Айдарлы	43.99350	79.57250
57	MK117802	D. picta	Казахстан	Айдарлы	43.99350	79.57250
58	MK117803	D. flexuosa	Казахстан	Дубин	43.76900	80.06420
59	MK117804	D. sesquilina	Киргизия	Коро-Гоо	41.49370	74.92570
60	MK117805	D. kusnezovi	Киргизия	Коро-Гоо	41.49370	74.92570
61	MK117806	D. kusnezovi	Киргизия	Коро-Гоо	41.49370	74.92570
62	MK117807	D. sculpta	Киргизия	Урумбаш	41.18530	73.38030
63	MK117808	D. flexuosa	Казахстан	Аксуат	45.70472	62.84777
64	MK117809	D. obscurata	Казахстан	Асуат	45.70472	62.84777
65	MK117810	D. saisani	Казахстан	Турлан	43.50870	68.84770
66	MK117811	D. radapicta	Казахстан	Толтыр	46.63500	54.18830
67	MK117812	D. christophi	Казахстан	Бейнеу	45.58170	55.44970
68	MK117813	D. picta	Казахстан	Бейнеу	45.58170	55.44970
69	MK117814	D. rada	Казахстан	Бейнеу	45.58170	55.44970
70	MK117815	D. rada	Казахстан	Бейнеу	45.58170	55.44970
71	MK117816	D. flexuosa	Казахстан	Бейнеу	45.58170	55.44970
72	MK117817	D. tenera	Казахстан	Дубин	43.76900	80.06420
73	MK117818	D. radapicta	Казахстан	Дубин	43.76900	80.06420
74	MK117819	D. flexuosa	Казахстан	Дубин	43.76900	80.06420
75	MK117820	D. flexuosa	Казахстан	Актогай	43.24300	78.88000
76	MK117821	D. flexuosa	Казахстан	Актогай	43.24300	78.88000
77	MK117822	D. sesquistria	Казахстан	Айдарлы	43.99350	79.57250
78	GWOUC173	D. sesquilina pamira	Киргизия	Кызыл-Эшме	39.6207	72.2868
79	GWOUC145	D. catocalis	Киргизия	Коро-Гоо	41.5217	74.7642
80	GWOUC170	D. catocalis	Киргизия	Бардобо	39.5145	73.2675
81	MK117823	Drasteriodes limata	Казахстан	Бейнеу	45.58170	55.44970
82	MK117824	Armada panaceorum	Казахстан	Бейнеу	45.58170	55.44970

Таблица 2 Последовательности COI, использованные в настоящей работе, полученные из баз данных BOLD и GenBank

№	Идентификатор	Pecypc	Вид (ID источника)	Страна	Локалитет	Широта	Долгота
1	BCMI241-11	BOLD	D. flexuosa	Израиль	Не указан	30.8006	35.2478
2	BCMI390-11	BOLD	D. pulverosa	Израиль	Не указан	30.7276	35.1835
3	IBLAO342-12	BOLD	D. cailino	Испания	Las Santas	37.9667	-2.5094
4	IBLAO356-12	BOLD	D. cailino	Испания	Murcia	38.0806	-2.2786
5	KM573645	GenBank	Noctua orbona (внешняя группа)	Австрия	Vorarlberg	47.2670	9.6670
6	MAMOT1069-11	GenBank	D. chinensis	Пакистан	Chitral	35.8333	71.7667
7	MAMOT1204-11	GenBank	D. cashmirensis	Пакистан	Chitral	35.8333	71.7667
8	MAMOT1349-11	GenBank	D. saisani	Пакистан	Chitral	35.8333	71.7667
9	MAMOT1350-11	GenBank	D. saisani	Пакистан	Chitral	35.8333	71.7667
10	QUNOC255-09	BOLD	D. sculpta	Киргизия	Арсланбоб	41.3300	72.9700
11	QUNOC260-09	BOLD	D. caucasica	Казахстан	Семипалатинск	50.3900	80.2600
12	QUNO289-08	BOLD	D. flexuosa	Казахстан	Мангыстау	43.0820	52.3330
13	QUNO290-08	BOLD	D. pulverosa	Россия	Тыва	50.1600	96.3200
14	QUNO288-08	BOLD	D. flexuosa	Казахстан	Мангыстау	42.9670	52.7170
15	QUNO292-08	BOLD	D. picta	Казахстан	Мангыстау	43.1670	54.0080
16	QUNO293-08	BOLD	D. picta	Казахстан	Мангыстау	43.0820	52.3330
17	QUNO294-08	BOLD	D. caucasica	Киргизия	Бишкек	42.8200	74.6600

№	Идентификатор	Pecypc	Вид (ID источника)	Страна	Локалитет	Широта	Долгота	
18	QUNO295-08	BOLD	D. caucasica	Киргизия	Бишкек	42.8200	74.6600	
19	QUNO296-08	BOLD	D. chinensis	Монголия	Баянхонгор	45.3800	100.0510	
20	QUNO297-08	BOLD	D. chinensis	Монголия	Баянхонгор	45.3800	100.0510	
21	QUNO298-08	BOLD	D. kabylaria	Алжир	Illizi env	26.4500	8.4800	
22	QUNO299-08	BOLD	D. kabylaria	Алжир	Tassili Mts.	27.1600	7.1900	
23	PHLAF309-11	BOLD	D. cailino	Македония	Radika	41.7890	20.5470	

Таблица 3

Количество различий между последовательностями COI тянь-шанских популяций Drasteria obscurata и среднеазиатских популяций D. caucasica (в парах нуклеотидов)

№	Проба		2	3		арал 5	6	7	8	0	10	11	12	13	14
Drasteria obscurata															
1	MK117746 obscurate Koram														-
2	MK117747 obscurata_Korani	-	-	-	-	-	-	-	-	-	-	-	-	-	-
3	MK117749 obscurata_Almaty	0	-	-	-	-	-	-	-	-	-	-	-	-	-
4	MK117740 obscurata_Almaty	0	0	-	-	-	-	-	-	-	-	-	-	-	-
5	MK117750	1	1	1	-	-	-	-	-	-	-	-	-	-	-
6	MK11//50 obscurata_Almaty	1	1	1	1	-	-	-	-	-	-	-	-	-	_
7	MK117751 obscurata_Almaty	0	0	0	0	1	-	-	-	-	-	-	-	-	
, 0	MK117752 obscurata_Almaty	0	0	0	0	1	0	-	-	-	-	-	-	-	
0	MK117753 obscurata_Almaty	0	0	0	0	1	0	0	-	-	-	-	-	-	-
9	MK117754 obscurata_Almaty	0	0	0	0	1	0	0	0	-	-	-	-	-	-
10	MK117758 obscurata_Bishkek	0	0	0	0	1	0	0	0	0	-	-	-	-	-
11	MK117761 obscurata_Bishkek	1	1	1	1	2	1	1	1	1	1	-	-	-	-
12	MK117762 obscurata_Bishkek	1	1	1	1	2	1	1	1	1	1	2	-	-	-
13	MK117763 obscurata_Bishkek	1	1	1	1	0	1	1	1	1	1	2	2	-	-
14	MK117809 obscurata_KZ_Aksuat	1	1	1	1	2	1	1	1	1	1	2	2	2	-
		Dr	aste	ria c	auco	isica	ı								
1	MK117767 caucasica_Usek														
2	MK117783 caucasica_Usek	0													
3	MK117784 caucasica Usek	0	0												
4	MK117786 caucasica Ili	0	0	0											
5	MK117787 caucasica Ili	0	0	0	0										
6	MK117766 caucasica Ili	2	2	2	2	2									
7	OUNO294-08 caucasica Bishkek	0	0	0	0	0	2								
8	OUNO295-08 caucasica Bishkek	0	0	0	0	0	2	0							
9	MK117776 caucasica_Kulanak	1	1	1	1	1	3	1	1						
10	MK117796 caucasica Kulanak	1	1	1	1	1	3	1	1	0					
11	MK117797/caucasica_Toktogul	2	2	2	2	2	2	2	2	3	3	<u> </u>			
12	MK117774 anucasica_Toktogui	2	2	2	2	2	2	2	2	2	2	0			
13	MK117775 approaches Tolet-	2	2	2	2	2	2	2	2	2	2	0	0		
14	WIN117700	2	2	2	2	2	2	2	2	3	3	0	0	2	
	MK117/88 caucasica_Toktogul	1	1		1	1	3	1	1	2	2	- 3	3	3	1